隨著人工智能、物聯網、大數據等新一代信息技術的蓬勃發展,光伏企業已開始嘗試將其應用于光伏支架中。。未來光伏電站將向自動化、化及智能化發展,而光伏支架系統將成為新一代信息技術在光伏電站項目中的重要應用場景之一,來提高整個電站的發電量,降低投資、運維成本,終增加投資回報率。
近年來中國光伏市場及產業鏈優勢在光伏支架行業得到了充分的發揮。中國光伏支架廠家在滿足國內光伏市場需求的同時,部分企業已經開始布局海外市場,通過內生增長、外部收購等方式,顯著提高了在光伏支架市場的份額。
光伏支架作為光伏電站重要的組成部分,它承載著光伏電站的發電主體。支架的選擇直接影響著光伏組件的運行安全、破損率及建設投資,選擇合適的光伏支架不但能降低工程造價,也會減少后期養護成本。







根據柔性支架安全情況,荷載組合可分為僅考慮結構自重、考慮自重與雪荷載共同作用、考慮自重與風荷載共同作用下的3 種情況。這3 種受力情況下荷載計算與組合形式不同,受力分析時,對不同的荷載效應進行組合,形成不同工況。同時,環境溫度的變化會導致鋼絞線膨脹或收縮,從而造成預應力的變化,并引起鋼絞線位移增大或縮小。因此,一方面應保證在溫度上升達到設計高值時,鋼絞線位移仍然滿足剛度條件;另一方面保證在溫度降低到低值時,鋼絞線應力不超限。
1) 應先張拉前( 下) 鋼絞線,后張拉后( 上)鋼絞線。張拉后鋼絞線時對前鋼絞線的影響較小,而張拉前鋼絞線會造成后鋼絞線較多的應力損失。

隨著太陽能電站的普及和運用,針對更多惡劣腐蝕環境以及日益嚴格的環保要求,作為保護整個光伏電站的“骨骼系統”,光伏支架如何應對如此復雜多變的自然環境?安泰深耕支架解決方案13年,重視從材料和結構端共同優化,推出了全新鍍鋅鋁鎂光伏支架,大大提高了材料的耐腐蝕性能,適合替代傳統熱鍍鋅材料,應用于大型地面電站項目。
鍍鋅鋁鎂板的鍍層是由鋅(Zn)、鋁(Al)、鎂(Mg)高溫固化形成,其顯微結構由Zn、Al和Mg的致密三元共晶組織構成,從而使鋼板表面形成一層致密的、有效防止腐蝕因子穿透的屏障。
